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Derivation of macroscopic equations is studled for nonequilibrium processes
in a rarifiled gas by means of breaking the chein of momentum equations with
the aid of maximum entropy distribution ;&ction 1).. In the description of
a monstomic gas, ten-momentum {Section 2) and thirteen-momentum (Section 3)
approximations are utilized. It is shown that the method 1s easlly general-
1zed to the case of polyatomic (Section 4) and also degenerate {8ection 5)
gas.

For various nonequilibrium processes nonequllibrium expressions are found
for entropy, rise of entropy and dissipation of energy, and also for mecha-
nical energy of small perturbation .

By means of simple examples the difference between systems obtained and
ggmmon systems of equations of the Navier-Stokes type 1s discussed (Section

1., The Boltzmann equation which gives a microscopic description of the
motion of a rarified gas, on one hand is qulte complex for analysis and on
the other contains information about the behavior of the system which is
too detailed from & practical point of view [1]. Therefore, customarily a
less refined description of the system is applied utilizing a finite number
of macroscopic quantities., In various approximations of the Chapman-Enskog
(2] method the density o , the velocity wu, and the energy £ of the gas
are selected as such macroscopic varlables. Here viscous tensions g¢,, and
the heat flux @, do not appear &8s independent variables but are connected
through definite relatlionships with derivatives of functions u; and % .
In connection with this the Chapman-Enskog method is not capable by itself
to describe the relaxation process as a result of which the mentioned rela-
tionships are established. Illustrative in this respect is Maxwell's exam-
ple of relaxation of tensions in a homogeneous Quiescent gas., Simllar limi-
tation of the Chapman-Enskog method becomes understandable if it 1s taken
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Derivation of Grad's type equations 131

into conslideration that nonequilibrium conditions in the relaxation process
must be characterized in addition to p, w; and £ also by other independ-
ent quantities, for example by quantities oy, and @,;, and perheps also by
higher moments of distribution function yf(x, v, t). Here additionesl moments
must satlsfy relaxation equatlons which are independent of conservation equa-
tlons.,

In order to obtain these equations it 1s natural to proceed from an infi-
nite chaln of Maxwell momentum equations

dp dpu; 0 Opu; 0 (pu;u;, -+ Pik) -0

at " dx; ' at oz, ’ (1.1)

= Ju ete.

D (P + pujuy) + 0 (pugupu; + 2Q -+ Pyuy + Pyuy + Prjuy)
at 6xl

(P = §m (o, —u) (o — ) fdv, Qupq= [ 1am (v — w)) (@ — wy) (1~ ) 1Y)
which are equivalent to Boltzmann equation.

Here J,, deslignates the moment of the tensor v, v, with resect to the
collision integral. Macroscopic approximation of the chain (1.1) is achieved
by breaking it by means of one or another statistical hypothesls with regard
to the form of the distributlon function.

If a certaln number of selected moments 1s retained when the chailn 1is
broken, the hlgher moments should be expressed through the selected ones.
This is achieved, as a rule, through the selection of distribution function
which depends on the selected moments as parameters. Here the lndependent
effect of higher moments on the development of the process 1is neglected.

This 1is Grad's approach. It utillzes the statlistical hypothesls accord-
ing to which the distribution function of molecules is represented by a
finite section of a series in orthogonal Hermite functlions where the number
of terms corresponds to the number of selected moments in & glven approxima-
tion.

Grad's method suffers from some deficlencies, Being tied to a certailn
orthogonal system of functions, 1t cannot be lmmedlately generalized to a
polyatomlic or degenrate gas. In each new case a selectlon is required of an
appropriate orthogonal system of functions and Grad's method does not provide
a principle for such a selectlon.

A second deficiency of the method lles in the following circumstance., If
the local entropy is computed by means of Grad's distribution as a function
of selected moments, then it 18 not possible to obtain from Grad's equations
as a consequence or corollary, equations of the type that would give abalance
of this entropy. As a result of this 1t turns out impossible to prove the
increase of Grad's total entropy with time for an 1solated gas.

The statistical hypothesls examined below does not have the deficlencies
mentloned but at the same time for monatomic gases shows little practlcal differ-
ence from Grad's. This hypothesis consists in that among all distributions
with one and the same values of selected moments of a given approximation
with maximum entropy is selected. On dehalf of this hypothesis the followilng
purely heuristic considerations can be presented. The system of equations
for selected moments is capable to describe reallty with some degree of pro-
bability only in the case when the real distribution functlon varying accord-
ing to the Boltzmann equation will be able to adjust itself at least approxi-
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mately to the statlstical hypothesls. This indicates that the characteristic
time of change 0 of an arbltrary distribution function 1s much smaller than
the time interval At of the least noticeable change of selected moments.

In the opposite case there would be no basis to assume that the distribution
correspon 3 to any statistical hypothesis at all and it would have been neces-
sary to utilize the Boltzmann equation, abstaining from macroscopic descrip-
tion. In the interval A¢ the values of selected moments practically do not
change, 1n addition to this for an isolated gas the total entropy lncreases
with characteristic time ¢ ; therefore, because of the great difference
between At and ¢, it 1s possible to assume that towards the end of the inter-
val of macroscopic time A¢ , the entropy is able to grow to its maximum
value which 1s compatible with practically constant values of selected moments
in the interval 4¢ . Since limitations in the maximization of entropy have
a local character ivalues of moments are glven at each point in space occu~
pied by the gas) a maximum of total entropy necessitates a maximum in local
entropy at each point in space. The possibility of such a statistical hypo-
thesis for the case of monatomic gas was polnted out in [4].

2., As a most luclid example serves (rad's second approximation in which
the following ten moments are selected as "slow"

= {mpav,  oui = {mugav,  Pa = \m(—u) (u—w) fav @2.0)

Here m deslgnates the mass of the molecule, p,, deslgnates the pres-
sure tensor,

Utilization of only ten moments indicates that the effect of heat conduc-
tivity and, of course, the effect of higher moments are not consldered.

The entropy maximum of a unit volume
o8 = —k§jlmsav (2.2)
where 4 1s the Boltzmann constant, is readlly obtalned by means of Lagran-

ge's multipliers with supplementary conditions (2.1). The maximum is reached

for the function
3

P p G P pik .
f(x v, t)=— (2,‘)'/2(det T2 ) exp {'- 5 P (v —w) (v uk)} (2.3)
Here pix are matrix elements of the inverse of p,,. Slnce p,,= p§,,+
+ 0,4y, Where p = I/EP,k is the isotropic pressure, (2.3) converts to locally
Maxwellian distribution for g,=0. If o, 1s considered to be small and (2.3) 1s
expanded in terms of ¢,, to the first order, the following function 1s
obtained:

P 1 (v —u)?

fo(%, v, ) = & GarTyh €XP (—‘57?7"“) [1+2P (vi— ul)(vk’uk):' (2.4)
Here A 1s the gas constant and the temperature 7 1s determined by

Equation p = pRIT .

Function (2.%4) corresponds in accuracy to Grad's distripution for the
second approximation. Thus, (2.3) improves Grad's function (2.4) only in
the second order with respect to tensions. Breaking of chain (1.1) by means
of (2.3) at ten moments gives the following systenm of eguations

dp . Opuy dpuy; A (puguy -+ Py,)
Bt T v LAY §
at + o 0xi =0, . 6t‘ + oz,
9 (Py -+ pugiy) + 9 (puguytsy + Pty + Py + Pryy) - p Sex (2.5)

at oz,
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where u 1s the coefficlent of viscosity. System (2.5) coincldes with the
system of second approximation obtalned by Grad's method. It is appropriate,
however, to note that the moment of the tensor v, v, with respect to the col~
lislon integral in the right-hand side of (2.5) has the indicated form strictly
speaking only for Maxwelllan molecules. For other models of molecules thce
right-hand side of (2.5) represents the first term of the expansion in terms
of @,, for exact expression. For intermolecular force depending on a power
of intermolecular distance z ~ g-* we can calculate by means of (2.3) a
quadratic correction to the right-hand side of (2.5). This correction
i—_——_—?—z—ia (Gj,-ﬁj,-éu.; — 3Gijdjk) (26)
is two times greater than Grad's corrections computed by means of (2.4). Here
the difference between (2,3) and (2.4) appears in the second order. This
difference leads also to somewhat different boundary conditions of slippage.
Utilizing considerations presented in [3] we can obtain with the aid of (2.3)
the following boundary c¢ nditions of slippage:
1
oy Qéf;?;? ui(P(szcn))/’zzo (i=2,3) (2.7)
It is assumed here that the normal to the surface element 1s directed

along the x,-axls in the positive direction, o 1is the fraction of mirror-
reflected molecules, the remalning molecules are reflected diffusely. If in
(2.7) the root is expanded to the first order with respect to 0,,» then
Grad's conditions for the second approximatlon are obtalned

25

Expansion (2.4) of function (2.3) was utilized in [5] to ohtain conditions
of slippage (2.8), here the author limited himself to the zero order, neglec=-
ting é‘ou/P .

From Equation (2.2) with the aid of (2.3) the expression of entropy 1is
readily obtalned through macroscoplic parameters

S = —3,R1Inp+ Y,R Indet|Py| (2.9)

At equilibrium p,,= p6,, and (2.9) converts into the equilibrium expres-
sion for entropy. The change of entropy with time is examlned by means of
(2.5). Utilizing the relationship d lu det|Py] = P¥dP; the following
is easy to obtain from (2.5) and (2.9)

dS _ 3pS dpSu,
dt — ot oz,

Let p,, p, and p, be eligenvalues of the positively singular matrix Pp,, .
Then the components of the quantity p!*x will be p7!, p3' and pgt.

~ R PP (PP — 9] (2.10)

From this

PP —Y (P1+P2+P3)(%— 'l_+'}-)—9=

=& = G TR = (BT + (5 - (BT
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Therefore, the right-hand side of {2.10) is nonnegative and :equalt to zerc
only 1f P,,= pb,,. If now (2.10) 1s integrated over the volume of the gas
and 1f 1t is taken into account that y,= O at the boundary, we obtain that
the total entropy can only increase.

It 1s easy to see that Jjust as in the derivation of (2.5) the thermal con-
ductivity was not taken into account. In (2,10) the flow entropy term rela-
ted to thermal conductivity 1s absent and the gas automatically turns out to
be thermally 1solated from surroundings.

It 1is not difficult to show that (2.9) is the only entropy corresponding
to system (2.5). Speaking more precisely, if the followlng requirements are
placed on S(p, P,,):

a) as a consequence of (2.5) a balance (of the type (2.10)) 1s
applicable which permits to establish the increase of total entropy;

b) 1in the equilibrium condition the expression for S converts
into the known form for equilibrium entropy, then the function S(p, p‘k)
coincides with (2.9). In fact, by virtue of (2.5)

ds as dug PPy 4S8
P = P(zpkz 3P +P]k Ou +p — P 511) 77, b 3P, (2.11)

It is apparent that for given p and p,, we can select y, so that the
integral of the right-hand side over the volume will have any slgn, with the
exception of the case when

2Pkla "f"PJde 1l+p a 1,l=0 (212)
From (2.12) 1t is easy to obtain (taking first the trace of (2.12)) that
as 1 885 Lik
m—_-_._rrp-a?)—P (2.13)
From here
dS = — 5 p d [Indet||Py|— Slnpl, o S=F(Indet|Py|— 5lnp)

Condition (b) now permits to determine the form of function F and to
establish that § coincides with (2.9).

In this way only the hypothesis of maximum entropy gives the correct
expression of entropy (2.9) uniquely corresponding to system (2.5). Expan-
sion of (2.9) with respect to @,, to second order gives

S = —3,RInp + %,RInp— Y Royoup™® (2.14)
By means of (2.4),however, even the quadratic correction (— §Ro,,0,,P7?)

to equilibrium entropy turns out incorrectly.

Expnding the right-hand side of (2.10) with respect to 0,, near equilib-
rium, it 1is easy to obtain that the entropy increase 1n unit of volume is
equal to }c,,a,,/bT and the energy dissipation per unit volume 1is

A CikSik
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Small perturbations of the state at rest with density po and pressure
D, will be examined. Linearization of (2.5) gilves

p ouy duy op , 9oy
3L + Po axk = O) Po ot + ox; + '(ﬁ =0 (216)
5 Ou,, 963, Ou; duy, ) ou,;

op - Po
0t+Tp°E—O' 7‘*‘1’0(@‘4‘ dwi""‘g"éik'a_xl—)‘i‘_uo‘oik:o

The second equation 1s multiplied by u,, the third by 3/;P/b° , and
fourth by %0,,/pP, and these equations are added. If the relationship
D =5/:sP,0/p, which is not violated by (2.16), 1s utilized, it 1s easy to
obtain that

9 [ pou? 5 po o Sik ik 0 (PO + 0wy | O Sy
G\ T o T Im ST + 5 =0

The second term in (2.17) 1s the work of perturbaticn per unit time, the
third term by virtue of (2.15) is the energy dissipation. Therefore the
expression under the differential sign with respect to time should be iden-
tified with mechanical energy of perturbation so that (2.17) represents a
balance of mechanlcal perturbation energy. The first two terms in the
expresslon for mechanical energy are well known.equilibrium energy terms of
the sonlc wave, the third member 1s energy which 1s due to nonequilibrium
viscous process.

(2.17)

dx,,

If the collision integral contains a large parameter, then y can be
formally considered a small parameter. Expanding the solution in serles
with respect to the small parameter, we obtaln from (2.16) in the first

oo — (2 O 25 OU
="M, T3 — 3 V¥

Entropy increase then converts into an expression which corresponds to

approximation

(2.18)

thermodynamics of irreversible process

O T or A\, e, T 3 %

1

s p (3ui dup 2 o 0 )2
k

3, In order to account for thermal conductivity 1t 1s necessary in addi-
tion to (2.1) to select also moments which correspond to heat flow

fdv 3.1

1

2

In the application of the presented method in thls case some pecullaritiles
arise. Traces of this peculiarity are already evident in Grad's distribution
function for the 13-moment approximation

“Sm(Vi_ u;) (v — u)?

O;; Q; (v; — ui) — u)?
f=rto {1 +—271§—T‘ (v; — uy) (v — u3) — pRT [1 _(v5m:l ]} -2

where f, 1s Maxwell's distribution. For sufflclently large v, (with res-
pect to modulus) the function (3.2) becomes negative., This circumstance
apparently does not introduce substantlal difficulties if @, are suffilci-
ently small, The point 1s that for an lsolated gas with the %otal energy H
the velocity of molecules 1s limited: V®<C 2H /m.. In this region of velo-
cities for sufficiently small ¢@,, (3.2) will be positive. Outside of thils
region [, turne to be quite smail g0 that negative values of s practically
have no influence and Equation (3.2) can be used over infinite range of
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velocities, Maximization of entropy in the region — (2H/m) sl e, € C(2H/mY
with supplementary conditions (2.1? and (3.1) leads to the function

f==cexp [—ay (r; — u) (v — w2 — P {v — w2 — 1y (v; —wy) (v gl (13

In utilizing (3. 3) it is necessary to take into account the limitation of velo-
city since over the infinite range (3.3) cannot be integrated at all. For
sufficlently small q, and y,, we can expand (3.3) in the indicated region to
first order with respect to these quantities and to utllize this expansion in
the infinite range. If now g are related to the selected
moments by means of (2.1) and t3 1), then Equation (3.2) is obtained. Grad's
function {3 2), just as in the case of ten moments, in principle does not

ermit to compute even quadratic correctlons to entropy. The advantage of
3.3) consists in the possibility to expand this expression to higher orders
with respect to o, and In this way it 1s possible to obtain the
entropy for example to thira order

%%k 1 OuSkiOu
7 5 P
R PQ;iQ; Ez_IiPUiinQk

—5 P +25 Pt

5 3 1
S=—-2—Rlnp+—2*121np—-—4-R

(3.4

By virtue of 13-moment equations { 3] the following balance for § 1is
applicable with accuracy to second order:

aps 9 pSy Qz 2040 050 QQ
ot T 7oz, ax =5 T =T T W

(3.5)

where x 18 the coefficlent of thermal conductivity.

The balance for mechanical energy of small perturbation has in virtue of
linearized 13-moment equations the form

] pou2 5 Po 5 Do 1 Gikc‘ik Po }

3—‘{ 2 +ﬁpozp+4po[ —3——’9—0- ][ P~ 3o ]+ g T Epa, QiQif t
Q;Q;

+a uy (Py; + U.,)+5p 03+ 77 Q,}+ oz ”+;’T—;=0 (3.6)

I'S

The term containing square brackets in the expression for mechanical
energy 1is due to the fact that in the presence of thermal conductivity the
nonadiabatic nature of the process in an element of gas appears already in
the first order with respect to deviations.

4, To begin a study of a gas consisting of molecules with internal
degrees of freedom, we examline at first the case of rough spherical mole-
cules, If the process of second viscoslty turns out to be determining,then
in the number of selected moments 1t is necessary to include separately, for
example, the translational energy

= S mfdvde, pu; = S mufdvdw

pE = S [Vom (v — u)? + Y, [0?] fdvdw, pll = S ,m (v — u)? fdvde (4.1)

Here ®w 1is the angular velocity of the molecule, I 1s 1its moment of
inertia and N1 1s the translational part of energy. The entropy maximum
for conditions (4.1) 1s achleved with the following function
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= W m't: (1of) " exp[-— — (v—u)? ——IQB‘ wz]

3 3
(s=gmrr» B= w@—m) (4-2)
Here the internal and translational degrees of freedom &re at different

temperatures which corresponds to the assumptlon expressed in [6). Equations
analogous to (4.1) and (4.2) can be readily written for any concrete form of
internal degrees of freedom. In the general case 1t is convenlent to intro-
duce instead of £ and 1 , equilibrium pressure p = (Y — 1) p£ and a
kinetic increment € = o [%/gl1 — (y — 1) E]l, where 7 =1c¢,/¢, 1s the
adlabatic exponent for the given model of molecule. With the aid of the
function of maximum entropy the chain of momentum equations which 1s obtained
from the Boltzmann equation corresponding to the given model, 1s broken and
this leads to a system of equations of relaxational gas dynamlcs

dp | Opmi _ ou, | 3(pte)
ot om0 poz+pkax+ oz =0
an dpu
o T +(T—1)(p+e)d =0 (4.3)
oe |, ey 5 Ou; e
o T o, +<—3———T)(p+e) 5, T = =0

For the model of rough spheres y = 4/, and the relaxation time r can
be computed exactly

1 32 a2 I
LBV K Vebte (k=7a) (4.4)

T mg?

Here ¢ 1is the dlameter of the molecule. If near equilibrium e 1s neg-
lected in comparison to p , then (4.4) coincides with the expression obtained
by Kohler [2]. For an arbitrary model of a molecule the calculation of «
in explicit form is difficult. For small ¢, v can be considered a function
of p and p only and accounted for phenomenologically.

From the function of maximum entropy we can obtain the expression for
entropy in terms of p , p and ¢

—3r 3(7—1)] TRl
——__. — n 4.9
S=3Rin(p+e)+ yo Rln|p—T5t | — s Iy Rlnp  (45)

From 1lnequalities O < N1 < F 1t follows that the expresslon under the
logarithms are positive. Because of (4.3) the following entropy balance is
applicable:

6pS +6pSui _ Rpe? (4.6)
oz,  t1Ch—1@TePp—3d—1)/6—3M]

Just as in the case of the 10-moment equations we can verify that the
entropy (4.5) uniquely corresponds to system (4.3). Linearization of (%.3)
glves
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If 1, 1s a small parameter then expanding the solution formally in serles

wlith respect to

ship & = — & Juy / dag

T, We obtain in the first approximation the common relation-

(€ == (%3 — 1) poto) (4.8)

Here € 1s the coefficlent of second viscosity,

Because of (4.6) the entropy increase per unit volume with accuracy to

second order wlth respect to e
is equal to &%/t
the third by »/yP, , the fourth by

1s equal to

e®/eT, , and energy dissipation

Multiplying the second equation of system (4.7) by wu,,
¢/(8/s — v)p, and adding, we obtain the

balance of mechanical energy of perturbation

gl

9 pou'~’ TP 0
{2+

ot |

In the case wher:2

Y A

Mp+@ui+_g

T, 15 the small parameter, l.e. the relationship (4.8)

exists, Equation {4.9) converts to the usual balance of energy in a sound

wave for the process of second viscosity.

In order to take into account processes of first and second viscoslty

simultaneously, 1t 1s necessary to introduce into (4.1) the following expres-

sion in place of pll

Py = (p +¢8) O -+ o =

Here p
tionship, e

i1s the kinetic increment due to second viscosity and

V(04 — ) (0 — ) favaw
is the pressure connected with energy x by an equilibrium rela-

o, 1is

the tension characterizing the process of first viscosity.

Maximizing the entropy and breaking the corresponding chain of momentum
equations with the aid of the obtailned distribution, we arrive at the system

ap dpuy Ou;

duy . 9 (pOyy + 88y + 53)

e — -———‘_‘l prsenad
W_*— dr; 0, P 5 + puy oz, =0

Ox,

Opu; 0
%?‘{‘—5;:+(T~1)[(P+3)6ik+5ik]'5%:0

03, 03.,.u du;
ik k™l
3t Fr

Juy duy,
+(p+¢) [5}: + i

i

o8 deu, 5

duy, 2 ou

r

1
e + ou Fe, -—Tﬁikﬁrs‘b—;s' +

S au‘]+P3i” =0

L. m (4.10)

1

—(97—{—%{——}—(*3—*—7)[(.0%—8)511:“%0%]%+T(%“T>P8:O

In (4.10) moments with respect to colllsion integral are accounted for to

the first order In ¢ and o, .

Phenomenclogical coefficlents

uoand g
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are computed only in exceptional cases of molecular models, Entropy per unit
mass corresponding to system (£.10) turns out to be equal to

R 5—3 3(r—1 R
S=71ndetllP;kﬂ—§—R§~(T—_——%ln [p———g:;%—n,)s]———ﬂr—_y-?lnp (4.11)

From the system which is obtained by linearization of (4.10) it 1s easy
to deduce the balance for mechanical energy of perturbation

d | pou? TPy o i Sif g2
W[T'*‘Eip - + 57 ]“"

4p, 5/3—"1)'Pg
O POy by +oy)uy | oy Oy et 0 (412
oz, uo U T 12)

To the usual expression of sound wave energy terms are added here which
are due to nonequilibrium processes of first and second viscosity.

5. As an example of application of the method to a degenerate gas we will
examline thermal conductlivity of a simple lattice of dlelectric. Let o,
(1 =1, 2, 3) Dbe the dependence of characteristic frequencies of the crystal
on thelwave vector k for three values of polarizatlon of displacement wave.
If 7" 1s the number of phonons wlth the wave vector Kk and polarization
1 , energy and flow of heat are written in the form [7]

E= Dumbhrot=SWwW(.., RN Y ny hoy
bE L hE . (5.1)
o oWy
o 1k
Q= Db hmklm—i—: SW .m0 D) mthey 3%,
Lk n Lk

where W (.., nkﬁ- ..} 1s the probability of given distributlon of phonon
numbers, and (ng>is the average number of phonons. In (5.1) the summation
over all n, 1is carried out over integers from O to = 1in accordance with
Bose-Einstein statistics for phonons. Maximizing the entropy — k <In W)
under conditions (5.1) we obtain

6mkl
W(.oond, ..y =1cexp [— (makl + Zaihmk’—ak—i) nkl] (5.2)
n i

where g and o, are Lagrange's multipliers, and Ckl 1s a normalizing con-
stant. It is evident from (5.2) that n, are independent. Taking into
%ons§deration normalization of probability to one, 1t 1is easy to obtain from
5.2) that

/ 00, -1 ~
<nkl> = [exp (Bhwkl -+ E“ih‘”kl—é}?) — 1] (5.3)
i

For a,= O +this equatlon converts to Bose equilibrium distribution for
phonons. 1In (5.3) quantities g and a, are expressed with the aid of (5.1)
through macroscoplc parameters £ and ¢ . From kinetic equation [7]

3
9 <ny (x)> S o, 8 <ny (%) oy (5.4)
ot ok, oz, Uk >
i=1
where Jkl is the "collision integral" of phonons due to nonharmonic members

in the potential energy, impurities and other defects in crystal structure,
follows the chain of eqQuations

o8 | 99 0Q; Iy 5.5
ot T oy Bt 7 0z, =L etc. (5.5)
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Here
do,' dm, ! Aot
< k k 1 K 1
Ty (x) = Dhoy 57 5yl (), L= ko, %,
Ik L 1,k

Cutting off system (5.5) is accomplished by means of (5.3). An explicit
form of dependence of I,,on F and ¢, can be obtained in some limiting
cases, The heat flux~w1il be consldered small and only the linear approxi-
mation to the system wlll be written out. In addition we will limit our-
selves to caseslof low temperatures (large g). In this case only small
frequencies ®y are lmportant. Let

Owkl
ol o = fm

where K - O in direction prescribed bu the unit vector n . At low fre-
quencies the number of oscillations in the solid angle 4a of reciprocal
space ~u®, 1.e.

Z! (v, n) dn = o' (n) @2 dn

It 18 easy to show that then T,,=4,,f , where
Calgl,l l -1
Aisz\Oi 8,%adn (28a dn) (5.6)
r " !

The system of equations for thermal conductivity at low temperatures is
written in the form
AN
7]

dE
FTian divQ = 0, 5 - Agrad £+ ¢, A0 1Q =10 (5.7
In (5.7) the thermal conductivity tensor A 1s taken into account pheno-
menologically. According to (5.6) tensor 4 depends only on properties of
the lattice. If the relaxation time is small (for definite frequencies of
change in physical parameters), the term 9Q /3¢ can be neglected so that

Q= —c¢,tAgrad E= —Agrad T (5.8)

Therefore the first equation of system (5.7) transforms into the common
equation of thermal conductivity in a solid. However at low temperetures
cases may be encountered when the length of free path is great and it is
necessary to use the complete system of equations (5.7).

Entropy § wilth accuracy to second order with respect to Q has the form
1 92§ 1
§ = So(B) + 3 5 A7Q Q = Sy — 5,75 (A7 Q) (5.9)

where §S,(&Z) 1s the equilibrium entropy [7], 4~ 1s a tensor, reciprocal of
A , the %arantheses indicate scalar product. By virtue of (5.7) entropy

balance (5.9) 1s applicable with accuracy to second order
a8 . Q 1
7 Hdivy =5 (31Q, Q) (5-10)

If relationship (5.8) exists, then (5,10) transforms into the common ent-
ropy balance which 1s given by thermodynamlics of irreversible processes for
the case of thermal conductivity in a solid body.

6. The hypothesis examined has the character of a recipe and therefore
definlte concluesions cannot be drawn with respect to the regilon of applioca-
bility of equations obtained., Their value has to be judged by studying their
propertlies. It was shown that these equatlions correspond to definite expres-
sions for nonequilibrium entropy. The entropy balance resulting directly
from these equations permits to compute energy dissipation. In the ocase of
small perturbations the possiblity exists to determine the nonequilidbrium
expression of mechanical energy and to derive the equation for its balance,
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In the low-frequency process when the time of relaxation can be considered
smell, equations and balances menticned transform into known equations and
balances corresponding to thermodynamics of irreversible processes. There-
fore 1t 1s interesting to examine high-frequency processes.

A plane monochromatic wave satisfies system (4.7) if frequency w and
wave number k are related by the dispersion relation

k=0 V1 — 0% (p/ ps— 5i0peT / 3p0) 6.1)

From (6.1) it is evident .that waves with high frequencies have a velocity
which approaches -V3/3p0/po, This is a physically natural result since high
frequency oscillations are not able to excite internal degrees of freedom
and molecules appear here llke rigid spheres. The usual equations for second
viscosity which take into account (4.8) yield in thils respect to system (4.7}

As another example we examine small fluctuations of a plate which confines
a semi-infinite volume with gas in 1ts own plane. In this case a decaying
transverse wave propagates into the gas. Application of Navier-Stokes equa-
tions, as is well known [8], ylelds the following expression for the depth
of penetration of a wave with frequency w

5=V 27 po (6.2)

" Equation"(6.2) shows that 6 -~ O for w - «» , 1,e. high frequencles are
pushed out” to the surface. For the given problem the followlng system is
easily obtained from (2.16)

80y, 801, duy Po
PGz T oz, =0 Bt T Pgg, T om0 (6.3)
where subscript 1 designates direction of osclllation of the plate and 2 the
direction normal to the plate. The dispersion relationship for system (6.3)
connecting real w with complex % has the form

Pok® = pg@ (@ ¥ ipy /) 6-4)
From (6.4) 1t follows that
8= (Im K —2u/Vep,~L for ® - o0 (6.5)

where [ 1is the length of free path. Qualitatively this result appears
quite natural. In this fashlon we see that even through equations of Grad's
type describe the gas as a continuous medium they are capable of showing

(at least gualitatively) effects which occur at distances of the order of
the length of free path. An analogous comparison of system (5.7) and the
usual Fourier equation can be made for the case of high frequency wave of
thermal conductivity in a solid.
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