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Derivation of macroscopic equations ls studled for nonequlllbrlum processes 
in a ramified gas by means of breaking the chain of momentum equations with 
t he  a i d  o f  maximum e n t r o p y  d i s t r i b u t i Q n  ~Sec t i on  1 ) .  I n  t he  d e s o r i p t l o n  o f  
a monatcmic gas ,  t e n - m n t u m  ( S e c t i o n  2J and t h i r t e e n - ~ e n t u m  (Se@tion 3) 
app rox ima t ions  a r e  u t i l i z e d .  I t  i s  shown t h a t  the  method i s  e u ~ l y  g e n e r a l -  
i zed  to  the  case  o f  p o l y a t o m i c  ( S e c t i o n  4) and a l s o  d e g e n e r a t e  ( S e c t i o n  5) 
gas. 

For v a r i o u s  n o n e q u l l i b r i u m p r o c e s s e s  n o n e q u l l i b r l u m e x p r e s s i o n s  a re  found 
fo r  e n t r o p y ,  r i s e  o f  e n t r o p y  and d i s s i p a t i o n  o f  ene rgy ,  and a l s o  f o r  mecha- 
n i c a l  energy  of  smal l  p e r t u r b a t i o n  . 

By means o f  s imple  e ~ l e s  the  d i f f e r e n c e  between sys tems ob t a ined  and 
common systems o f  e q u a t i o n s  o f  the  N a v i e r - S t o k e s  type  i s  d i s c u s s e d  ( S e c t i o n  
6 ) .  

i. The Boltzmann equation which glves a microscopic description of the 

motion of a ramified gas, on one hand is quite complex for analysis and on 

the other contains information about the behavior of the system which is 

too detailed from a practical point of view [I]. Therefore, customarily a 

less refined description of the system is applied utilizing a finite number 

of macroscopic quantities. In various approximations of the Chapman-Enskog 

[~ method the density p , the velocity u, and the energy E of the gas 

are selected as such macroscopic variables. Here viscous tensions ~,j and 

the heat flux QI do not appear as independent variables but are connected 

through definite relationships with derivatives of functions u, and E • 

In connection with this the Chapman-Enskog method is not capable by itself 

to describe the relaxation process as a result of which the mentioned rela- 

tionships are established. Illustrative in this respect is F~Lxwell's exam- 

ple of relaxation of tensions in a homogeneous quiescent gas. Similar liml- 

tation of the Chapman-Enskog method becomes understandable if it is taken 
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Derivation of Grad's type equations 131 

into consideration that nonequillbrlum conditions in the relaxation process 

must be characterized in addition to p, u~ and E also by other independ- 

ent quantities, for example by quantities a~j and Q~, and perhaps also by 

higher moments of distribution function /(X, V, t). Here additional moments 

must satisfy relaxation equations which are independent of conservation equa- 

tions. 

In order to bbtaln these equations it is natural to proceed from an infi- 

nite chain of Maxwell momentum equations 

Op Opu i Opu i O (puiu k-~- Pik) ~ 0 
a~ ÷ a~--~ - -  O, at ÷ a~ k (1 .1)  

9 (P ie  ~.pu~uk) O (puiukul -~- 2Qikl ~ Pikul -~ Pi~u~ -]- Pklui) = Jik e t c .  

Ot -~- Ox t 

w h i c h  a r e  e q u i v a l e n t  t o  B o l t z m a n n  e q u a t i o n .  

H e r e  J ~  d e s i g n a t e s  t h e  moment  o f  t h e  t e n s o r  v~v~ w i t h  r e s e c t  t o  t h e  

c o l l i s i o n  i n t e g r a l .  M a c r o s c o p i c  a p p r o x i m a t i o n  o f  t h e  c h a i n  ( 1 . 1 )  i s  a ch i eved  

by  b r e a k i n g  i t  by  m e a n s  o f  one  o r  a n o t h e r  s t a t i s t i c a l  h y p o t h e s i s  w i t h  r e g a r d  

t o  t h e  f o r m  o f  t h e  d i s t r i b u t i o n  f u n c t i o n .  

I f  a c e r t a i n  n u m b e r  o f  s e l e c t e d  m om en t s  i s  r e t a i n e d  when  t h e  c h a i n  l s  

b r o k e n ,  t h e  h i g h e r  m o m e n t s  s h o u l d  be  e x p r e s s e d  t h r o u g h  t h e  s e l e c t e d  o n e s .  

T h i s  i s  a c h i e v e d ,  a s  a r u l e ,  t h r o u g h  t h e  s e l e c t i o n  o f  d i s t r i b u t i o n  f u n c t i o n  

w h i c h  d e p e n d s  on  t h e  s e l e c t e d  m om en t s  a s  p a r a m e t e r s .  He re  t h e  i n d e p e n d e n t  

e f f e c t  o f  h i g h e r  m o m e n t s  on  t h e  d e v e l o p m e n t  o f  t h e  p r o c e s s  i s  n e g l e c t e d .  

This is Grad's approach. It utilizes the statistical hypothesis accord- 
ing to which the distribution function of molecules is represented by a 
finite section of a series in orthogonal Hermlte functions where the number 
of terms corresponds to the number of selected moments in a given approxima- 
tion. 

Grad's method suffers from some deficiencies. Being tied to a certain 
orthogonal system of functions, it cannot be immediately generalized to a 
polyatomic or degenrate gas. In each new case a selection is required of an 
appropriate orthogonal system of functions and Grad's method does not provide 
a principle for such a selection. 

A second deficiency of the method lies in the following circumstance. If 
the local entropy is computed by means of Grad's distribution as a function 
of selected moments, then it is not possible to obtain from Grad's equations 
as a consequence or corollary, equations of the type that would give abalance 
of this entropy. As a result of this it turns out impossible to prove the 
increase of Grad's total entropy with time for an isolated gas. 

The statistical hypothesis examined below does not have the deficiencies 
mentlc~edbutatthesametlme for monatomic gases shows little practical differ- 
ence from Grad's. This hypothesis consists in that among all distributions 
wish one and the same values of selected moments of a given approximation 
wlthmaximum entropy is selected. On dehalf of this hypothesis the following 
purely heuristic considerations can be presented. The system of equations 
for selected moments is capable to describe reality with some degree of pro- 
bability only in the case when the real distribution function varying accord- 
ing to the Boltzmann equation will be able to adjust itself at least approxi- 
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mately to the statistical hypothesis. This indicates that the characteristic 
time of change e of an arbitrary distribution function is much smaller than 
the time interval AS of the least noticeable change of selected moments. 
In the opposite case there would be no basis to assume that the distribution 
correspon s to any statistical hypothesis at all and it would have been neces- 
sary to utilize the Boltzmann equation, abstaining from macroscopic descrip- 
tion. In the interval At the values of selected moments p~actlcally do not 
change, in addition to this for an isolated gas the total entropy increases 
with characteristic time e ; therefore, because of the great difference 
between A~ and e , it is possible to assume that towards the end of the lnter- 
val of macroscopic time d$ , the entropy is able to grow to its maximum 
value which is compatible with practically constant values of selected moments 
in the interval At • Since limitations in the maximization of entropy have 
a local character (values of moments are given at each point in space occu- 
pied by the gas) a maximum of total entropy necessitates a maximum in local 
entropy at each point in space. The possibility of such a statistical hypo- 
thesis for the case of monatomlc gas was pointed out in [4]. 

2, As a most lucid example serves Orad's second approximation in which 

the following ten moments are selected as "slow" 

p = I m/dv, pui = S mvddv, P~k = I rn (v i - -ud (vk-- Uk)]dv (2.t) 

Here m des igna t e s  the mass of  the  molecule ,  P~k de s igna t e s  the pres  o 
sure tensor. 

Utilization of only ten moments indicates that the effect of heat conduc- 

tivity and, of course, the effect of higher moments are not considered. 

The entropy maximum of a unit volume 

pS = - -  k I / In / dv (2.2) 
where k Is the Boltzmann constant, is readily obtained by means of Lagran- 

ge's multipliers with supplementary conditions (2.1). The maximum is reached 

for the function 
p ( ps )% 

/ ( x ,  v , t ) - - ~  aetUP,~II exp{--~--Pik(v,--ui)(vl, .--u,}} (2.3) 

Here pl~ are  ma t r ix  e lements  of  the i nve r se  of  P t~ .  Since P tk"  PStw+ 
+ a~w, where p - 1/ap,~ i s  the l s o t r o p i c  p r e s s u r e ,  (2 .3 )  conver t s  to  l o c a l l y  
biaxwelllan distribution for o~-0. If a:k is considered to be small and (2.3) is 

expanded in terms of oI k to the first order, the following function is 

obtained : 
p i ( v _ u ) 2 ,  i cik ] 

/ r  (x, v, t) -- m (2nR-T)'/' exp ( - -  2 R T  ] t U t- ~ (Vi  - -  Ut) (Vlt - -  Uk) (2 .4)  

Here ~ is the gas constant and the temperature T is determined by 

Equation P = pAT . 

Function (2.4) corresponds in accuracy to Grad's dlstri~utlon for the 

second approximation. Thus, (2.3) improves Grad's function (2.4) only in 

the second order with respect to tensions. Breaking of chain (i.i) by means 

of (2.3) at ten moments gives the following system of equations 

Op Opu~ Opu t 0 (pu~uk A- P~) = 0 
+ ~ = o, : ot + o ~  

O (Ptk + Puiuk) O (putuku z + Pt~Ul + PU% + P~lul) P_ (2.5) 
c3t -4- Ox t = -- ~ Zik 
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where W is the coefficient of viscosity. System (2.5) coincides with the 

system of second approximation obtained by Grad's method. It is appropriate, 

however, to note that the moment of*the tensor utu ~ with respect to the col- 

lision integral in the rlght-hand side of (2.5) has the indicated form strictly 

speaking only for Max~elllan molecules. For other models of molecules the 

right-hand side of (2.5) represents the first term of the expansion in terms 

of G~ for exact expression. For Intermolecular force depending on a power 

of intermolecular distance F ~ d-' we can calculate by means of (2.3) a 

quadratic correction to the right-hand side of (2.5), This correction 

s - - 5 1  
s - -  i 2i~ (gJr~jrSik - -  3zi~v~k) (2.6) 

is two times greater than Grad's corrections computed by means of (2.4). Here 

the difference between (2.3) and (2.4) appears in the second order. This 

difference leads also to somewhat different boundary conditions of slippage. 

Utilizing considerations presented in [3] we can obtain with the aid of (2.3) 

the following boundary c nditions of slippage: 

~l iq -  2 (i - -  _k a~  Ut (P(P+~n))V' - -02~ ( i = 2 , 3 )  (2.7) 

It is assumed here that the normal to the surface element is directed 

along the x~-axis in the positive direction, a is the fraction of vlrror- 

reflected molecules, the remaining molecules are reflected diffusely. If in 

(9.7) the root is expanded to the first order with respect to a~: , then 

Grad's conditions for the second approximation are obtained 

2 (1 - -  a) /pP \1/' ( fill + +----~ u~ ~ - )  _l + - ~ / =  0 (~ = 2, 3) (2.8~ 

Expansion (2.4) of function (2.3) was utilized in [5] to o~tain conditions 

of slippage (2.8), here the author limited himself to the zero order, neglec- 

ting ~q~i/P • 

From Equation (2.2) with the aid of (2.3) the expression of entropy is 

readily obtained through macroscGpic parameters 

S ~- - -  5/2R In p q- 1/2~ In detIiP~ll (2.9) 

At equilibrium p~= pSik and (2.9) converts into the equilibrium expres- 

sion for entropy. The change of entropy with time is examined by means of 

(2.5). Utilizing the relationship d IH detIIP~ll = Pi~dPik the following 

is easy to obtain from (2.5) and (2.9) 

dS OpS aPSui R pp [pk~pZZ 9] (2.10) 
P - d =  a t  -~- Ox i = - 6 - - ~ -  

Let Pt, P~ and P3 be elgenvalues of the positively singular matrix p,~. 
Then the components of the quantity p~k will be p7 ~ , p~ and p~. 

From this 

P ~ P ~ - -  ~ ~- (P~ + P2 + P~) ~ + - ~  + ~ - - 9 =  

F(,,l 
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Therefore, the rlght-harad side of (2.10) is nonnegatlve and,equalt to zero 

only if. P:k" p6,~. If now (2.10) is integrated over the volume of the gas 

and if it is taken into account that u=- 0 at the boundary, we obtain that 

the total entropy can only increase. 

It is easy to see that Just as in the derivation of (2.5) the thermal con- 

ductivity was not taken into account. In (2.10) the flow entropy term rela- 

ted to thermal conductivity is absent and the gas automatically turns out to 

be thermally isolated from surroundings. 

It is not difficult to show that (2.9) is the only entropy corresponding 

to system (2.5). Speaking more precisely, if the following requirements are 

placed on S(p, e,k): 

a) as a consequence of (2.5) a balance (of the type (2.10)) is 

applicable which permits to establish the increase of total entropy; 

b) in the equilibrium condition the expression for S converts 

into the known form for equilibrium entropy, then the function S(p, p~) 

coincides with (2.9). In fact, by virtue of (2.5) 

OS Pt~ik  OS 
P - j r  - - P  2Pkt j ' s '  - + Pjk aS (2 .1 t )  

I t  i s  a p p a r e n t  t h a t  f o r  g i v e n  p and pt~ we can s e l e c t  ut so t h a t  t h e  

i n t e g r a l  o f  t h e  r i g h t - h a n d  s i d e  o v e r  t h e  volume w i l l  have  any s i g n ,  With t h e  

exception of the case when 

n ~S  OS OS 
r k l  ~ - ~ i  ~ -~- P jk  ~ 6il -~- p - ~ p  6iz = 0 (2.t2) 

From (2.12) it is easy to obtain (taking first the trace of (2.12)) that 

os  _ 1 os pi~ (2.t3) 
oP~  5 p 

From here 
I aS 

d S =  5 P-~p d [ln de t l ]PikH--  51n p], or S = F ( l n d e t [ t P i ~ [ I - - 5 1 n . p )  

Condition (b) now permits to determine the form of function F and to 

establish that S coincides with (2.9). 

In this way only the hypothesis of maximum entropy gives the correct 

expression of entropy (2.9) uniquely corresponding to system (2.5). Expan- 

sion of (2.9) with respect to Gi k to second order gives 

S = - -  5A.R In p -}- 3/2R In p - -  1 /4R~ ikGt i tp -2  (2.t4) 

By means of (2.g),however, even the quadratic correction (--~a,k~lkP - ~ )  
to equlllbrlum entropy turns out incorrectly. 

Expndlng the right-hand side of (2.10) with respect to ~i~ near equlllb- 

rlum, it is easy to obtain that the entropy increase in unit of volume is 

equal to ~O1 k~t k/wT and the energy dissipation per unit volume is 

dS %k %k (2. t  5) 
pT ~ = 21 x 
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Small perturbations of th~ state at rest with density Pc and pressure 

Pc will be examined. Linearlzatlon of (2.5) gives 

Op Ouk Ou~ Op O~ik 
o--/- + po--g-~z~ = 0 ,  O°-ai- + ~ +  o,~ - - 0  (2.t6) 

Op 5 Ou~ O~ik ( Oui Ouk 2 Oul \ po 
O--T-~---3-P° ~ = 0 '  Ot q t - P ° ~ x g  -3c Ox i 3 ~ i e ~ ) - ~ -  ~--~ - z i k = O  

The second equation is multiplied by u t ,  the third by a/BP/p o , and 

fourth by {atk/Po and these equations are added. If the relationship 

p = S/3poo/O o Which is not violated by (2.16), is utilized, it is easy to 

obtain that 

o p__~_q_ 5 po a2 + ~ + u~+ - - 0  (2.17) 

The second term in (2.17)is the work of perturbation per unit time, the 
third term by virtue of (2.15) is the energy dissipation. Therefore the 
expression under the differential sign with respect to time should be iden- 
tified with mechanical energy of perturbation so that (2.17) represents a 
balance of mechanical perturbation energy. The first two terms in the 
expression for mechanical energy are well known equilibrium energy terms of 
the sonic wave, the third member is energy which is due to nonequilibrium 
viscous process. 

If the collision integral contains a large parameter, then O can be 

formally considered a small parameter. Expanding the solution in series 

with respect to the small parameter, we obtain from (2.16) in the first 

approximation 
[ Oui Ouk 2 Oul ~ 

~ i k = - - ~ - ~ x ~  "~- Ox i 3 ~i~--~xt) (2 . t 8 )  

Entropy increase then converts into an expression which corresponds to 

thermodynamics of irreversible process 

Ou l ~2 
P 

3. In order to account for thermal conductivity it is necessary in addi- 
tion to (2.1) to select also moments which correspond to heat flow 

I ~ (vi -- ui) (v - u)' Qi 2 1 dv (3.1) 

In  the  a p p l i c a t i o n  of  the p resen ted  method in  t h i s  case some p e c u l i a r i t i e s  
a r i s e .  Traces  of  t h i s  p e c u l i a r i t y  are  a l r e a d y  ev iden t  in  Grad 's  d i s t r i b u t i o n  
f u n c t i o n  fo r  the  13-moment approximat ion  

{ "i, ( v , -  u,, - -  Q~ ( v , -  ui, [ t -  (v5~_#)2]} (3.2, 
I = 1o t +  2pRT (vj uj)-- pRT 

where fo is Maxwell's distribution. For sufficiently large v t (with res- 
pect to modulus) the function (3.2) becomes negative. This circumstance 
apparently does not introduce substantial difficulties if Qt are suffici- 
ently small. The point is that for an isolated gas with the total energy H 
the velocity of molecules is limited: v2~2H/m. . In this region of velo- 
cities for sufficiently small Qt, (3.2) will be positive. Outside of this 
region fo turns to be quite small so that negatlve values of f practically 
have no Influence and Equation (3.2) can be used over Inflnlte range of 
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velocities. Maximization of entropy in the reglon--(2H/m)%~<~'~ <,~(2H/'m) ~ 
with supplementary conditions (2.1) and (3.1) leads to the function 

]-=: cexp [ - - a  i(~i -- ~i) (v- -  u) ~--  J~ (~ ..... u) ~ -  Tik(vi-- ui) (% " %)J t3,3) 

In utilizing (3.3) it~ necessary to take Into account the limitation of velo- 
city since over the infinite range (3.3) carmot be integrated at all. For 
sufficiently small a, and Vi, we can expand (3.3) in the indicated region to 
first order with respect tothesequantities and to utilize this expansion in 
the infinite range. If now a,, fl , Vt, and c are related to the selected 
moments by means of (2.1) and (3.1), then Equation (3.2) is obtained. Grad's 
function (3.2), Just as in the case of ten moments, in principle does not 

~ ermlt to compute eve n quadratic corrections to entropy. The advantage of 
3.3) consists in the possibility to expand this expression to higher order~ 

with respect to a~ and Vik • In this way it is possible to obtain the 
entropy for example to third order 

5 3 ~ _ Oik~ik ~ OikqklGli 
S-~-- -  y R l n p + T R l n p - - ' - ~ R - - - ~  + " ~ R  p3 

R PQtQt 9R POikQtQk 
- - ~ -  pS -~-25 p4 (3.4) 

By virtue of 13-moment equations [33 the following balance for S is 
applicable with accuracy to second order: 

OpS O pSu, 0 [_~_ 2 ou__Qi I aikaj~ QiQi 
O't -'1- ~ 4- -~i --  5 pT ] --  2~T + ×T ~ (3.5) 

where a is the coefficient of thermal conductivity. 

The balance for mechanical energy of small perturbation has in virtue of 
llnearized 13-moment equations the form 

0 {p_~ 5 pc z ±  3 [ 5 pc ] [ t po ] ~ik~ik Po } 
a--/- + 6 po~ ~ ~Tpo P- -Y-~o  o P - - - ~ P  +-~-po +5---~o Q~Q~ + 

a { 2 T ~u a t f l i j .  QiQi 
-t-.~z j ut (p6tj-~. a~j) -p g~poOtjO~-i- -~o Qj j ~ - - ~ - t - - ~ o  =O (3.6) 

The term containing square brackets in the expression for mechanical 
energy is due to the fact that in the presence of thermal conductivity the 
nonadiabatic nature of the process in an element of gas appears already in 
the first order with respect to deviations. 

~. To begin a study of a gas consisting of molecules with internal 

degrees of freedom, we examine at first the case of rough spherical mole- 

cules. If the process of second viscosity turns out to be determlnlng, then 

in the number of selected moments it is necessary to include separately, for 

example, the translational energy 

p----Im[dvd~, put = I mvddvd~ 

0 E =  I [ ' / ,m(v--  u)~ + V~I~]Idvd', pH= I 1/2m (v - -  u)2 /dvdw (4.t) 

Here m is the angular velocity of the molecule, I is Its moment of 

inertia and M is the tranalatlonal payt of energy. The entropy max l mum 

for conditions (~.l) is achieved with the following function 
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/ -- (2g)sP m'A (1o5~//' e x p [ - -  ~ma ( v - -  u) 2 - - - ~  ¢~] 

( 3 3 )  (4.2) 
c t : 2 m t i  ' ~ ~--- 2m(E--FI) 

Here the internal and translational degrees of freedom are at different 

temperatures which corresponds to the assumption expressed in [6]. Equations 

analogous to (4.1) and (4.2) can be readily written for any concrete form of 

internal degrees of freedom. In the general case it is convenient to intro- 

duce instead of E and n , equilibrium pressure p ~--- (~- I) pE and a 

kinetic increment 8 : p [2/3H - -  (~ -- I) E]: where T "-~ Cp / C v is the 

adiabatic exponent for the given model of molecule. With the aid of the 

function of maximum entropy the chain of momentum equations which is obtained 

from the Boltzmann equation corresponding to the given model, is broken and 

this leads to a system of equations of relaxational gas dynamics 

Op Opu~ Ou i Ot,~ 0 (p -F e) ~ 0 
o---i + ~ = O, p ~ + pu,, ~ + on 

Op. Opu~ Ou t 
--at -4- ~ .  + (7  - -  t )  (p  -t-- e)  ~ ---- 0 ( 4 . 3 )  

+ + - -  ~) (p + ~) + -7- = o 

For the model of rough spheres y ~ 4/a and the relaxation time ~ can 

be computed exactly 

1 32 :~1/--~ K - ] / 9 (  p 
3 m (K  + 1)~ 

Here o is the diameter of the molecule. If near equilibrium e Is neg- 

lected in comparison to p , then (4.4) coincides with the expression obtained 

by Kohler [ 2]. For an arbitrary model of a molecule the calculation of 

in explicit form is dlfflcult. For small ¢, ~ can be considered a function 

of p and p only and accounted for phenomenologically. 

From the function of maximum entropy we can obtain the expression for 

entropy in terms of p , p and ¢ 

[ ] (4.5) 3 5 -- 3~ /it In p 8 R In p 
S=-:2" -R ln (p '4 -8 ) ' - } -  2(i ,-- t)  5--31" i"-- t  

From inequalities 0 < H < E it follows that the expression under the 

logarithms are positive. Because of (4.3) the following entropy balance is 

applicable: 
apS apsu~__ = np~, (4.6) 

at ~ az~ • P/3 - -  ~) (P -r- ~) [P - -  3~ (~ - -  1) / (5 - -  3~)1 
Just as in the case of the IO-moment equations we can verify that the 

entropy (4.5) uniquely corresponds to system (4.3). Linearlzation of (4.3) 

gives 
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;", i}ui '~q , 0 (p ~- B) 
{} P{} -()Z . . . . . . . . . . . . .  

,~/ -i {}{} 0~. "} O,r i 

' ~ 1' ( )" ~ :i 0 u i ( ':'~" 7 .! 

{,,-i r,,,, .;i {}, .... l') + ...... o 

If T o is a small parameter then expanding the solution formally in series 

with respect to % we obtain in the first approximation the common relation- 

ship 
8 -- "~ Ou~ / Oxi (~ :--: (% -- "~) poto) (4 .8 )  

Here g is She coefficient of second viscosity. 

Because of (4.6) the entropy increase per unit volume with accuracy to 

second order with respect to e is equal to ¢2/~T o , and energy dlsslpation 

is equal to cS/~ Multiplying the second equation of system (4.7) by u~, 

the third by P/YYo , the fourth by e/(s/3 -- 7)Po and adding, we obtain the 

balance of mechanical energy of perturbation 

0 rpoU ~ TPo ~o 8 ~" ] O(P-~-e) ui e ~ 
oqT[_ 2 -~- 2-~o~-p- A- 2(S/a__T)po _. + Ox i - { - - T ~ . 0  (4 .9 )  

In the case where % is the small parameter, i.e. the relationship (4.8) 

exists, Equation (#.9) converts to the usual balance of energy in a sound 

wave for the process of" second viscosity. 

In order to take into account processes of first and second viscosity 

simultaneously, it is necessary to introduce into (4.1) the following expres- 

sion in place of p~ P 
P i k  = (P +- e) ~t~ + ~ k  -- ~. m ( vi - -  ud (vk - -  u~)  l d v d ~  

Here p is the pressure connected with energy E by an equilibrium rela- 

tionship, ¢ is the kinetic increment due to second viscosity and ~t ~ is 

the tension characterizing the process of first viscosity. 

Maximizing the entropy and breaking the corresponding chain of momentum 

equations with the aid of the obtained distribution, we arrive at the system 

Op Ooui Ou i Ou i O (pSik .~- 88ik + Zi/¢) = 0 
o--[ + o~:-~ : O, P ~ i -  + pu ~ ~ + o:q: 

Op Opu+ Oui 
Ot + ~ - + - ( l " ~ l ) [ ( P + e ) 6 i ~ + ~ ] - ~ z ~ .  = 0  

Ou i Ou k 9 Ou r 
O~i~ O~ikul 4-  ~kZ Ox t 3 

I Ou t Ou~ 2 Out "] P~ik ~ 0 (4.to) 

08 asu t / s  \ Oui t 
aT 

In (4.10) moments with respect to collision integral are accounted for to 

the first order in ¢ and G1k • Phenomenologlcal coefficients ~ and 
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are computed only in exceptional cases of molecular models. Entropy per unit 

mass corresponding to system (a.lO) turns out to be equal to 

S = - ~  ln det ,  Pt~. + R 2 ( ~ _  t In p e - -  

From the syatem which is obtained by llnearizatlon of (4.10) it is easy 

to deduce the balance for mechanical energy of perturbation 

o-tO -t-- 2-foo~-TP° p,, -t-- ~i~4PoZi___._ ~ _~_ 2 (5/3~ "r)'pO + 
0 (pSit < @ sSi~ Jr  ~u~) ui ~i~ Gi~ e ~ 

+ + + -U = o (4.12) 

To the usual expression of sound wave energy terms are added here which 

are due to nonequilibrlum processes of first and second viscosity. 

5. As an example of application of the method to a degenerate gas welwill 
examine thermal conductivity of a simple lattice of dielectric. Let o k 
(7 = l, 2, 3) be the dependence of characteristic frequencies of the crystal 
on thelwave vector k for three values of polarization of displacement wave. 
If nk is the number of phonons with the wave vector k and polarization 
Z , energy and flow of heat are written in the form [7] 

t, k ~ Z,k ( 5 . t )  

Ookl ~ W ( .  , nk l, .) ~ nklhO)klOook:: Qi = E <nkI> hokl Ok i . . . . .  
l ,  k n l ,  k 

l 
where W (... , n k , • • .) is the probability of given distribution of phonon 
numbers, and! <nkl>is the average number of phonons. In (5.1) the summation 
over all n k is carried out over integers from 0 to ® in accordance with 
Bose-Einstein statistics for phonons. Maximizing the entropy --k <In ]4I> 
under conditions (5.1) we obtain 

~ r /  __ _ ._700, . l~  
(5.2) 

i n 

where  8 and a~ a r e  L a g r a r ~ e ' s  m u l t l p l i e , v s ,  and Ck l i s  a n o r m a l i z i n g  c o n -  
stant. It is evident from (5.2) that nk ~ are independent. Taking into 
consideration normalization of probability to one, it is easy to obtain from 
(5.2) that 

I t IOokl ~ 1-1 ,.. 
<nk/> • exp (~hok l+  Z(~ihOk ~ ) - - 1  (5.3) 

i 
Fo r  a l  = 0 t h i s  e q u a t i o n  c o n v e r t s  t o  Bose e q u i l i b r i u m  d i s t r i b u t i o n  f o r  

phonons. In (5.3) quantities 8 and al are expressed with the aid of ~.l) 
through macroscopic parameters E and Q . From kinetic equation [7] 

0 (nk I (X)> ~ O¢..OkZ 0 (nk/(x)> 
Ot D 7 ~--. Ok i Ox i Jk l (5.4) 

i=l 
where Jk I is the "collision integral" of phonons due to nonharmonlc members 
in the potential energy, impurities and other defects in crystal structure, 
follows the chain of equations 

OE OQ~ OQ~ OT~j (5,5) 
O-t ~ O~x i : O, Ot @ Oxj = Lj e t c .  
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H e r e  
t z 

~ k  a(Ok I a~k~ -3 ! . . . . . . .  Tij (x) = ~ h o  k Ok, 0k; <"k ~ (x)>, L i =  ~ h o k - g ~ ( J k  t 
lk l,k 

Cutting off system (5.5) is accomplished by means of (5.3). An explicit 
form of dependence of T u on E and Qt can be obtained in some limiting 
cases. The heat fluxwill be considered small and only the linear approxl- 
matlon to the system will be written out. In addition we will limit our- 
selves to caseslof low temperatures (large 8). In this case only small 
frequencies ~k are important. Let 

O i t ( n ) =  l im Ok i 
k ~  

where ~ ~ 0 in direction prescribed bu the unit vector n . At low fre- 
quencles the number of oscillations in the solid angle dn of reciprocal 
space -~, i.e. 

Z t (o, n) d n =  a t ( n ) ~ 2 d n  

It is easy to show that then T t j =  A,~E , where 

The system of equations for thermal conductivity at low temperatures is 
written in the form 

d E  OQ 
~ - +  div Q --- 0, ~ + A grad E + % A ~ - I Q  = 0 (5.7) 

In (5.7) the thermal conductivity tensor X is taken into account pheno- 
menologlcally. According to (5.6) tensor A depends only on properties of 
the lattice. If the relaxation time is small (for definite frequencies of 
change in physical parameters), the term 0Q / at can be neglected so that 

Q ~ - -  cv-~ k grad g ----- ~ k grad T (5.8) 

Therefore the first equation of system (5.7) transforms into the oommon 
equation of thermal conductivity in a solid. However at low temperatures 
cases may be encountered when the length of free path is great and it is 
necessary to use the complete system of equations (5.7). 

Entropy S with accuracy to second order with respect to Q has the form 

t 02So t 
S : S o (E) + ~- ~ (A- 'Q,  Q) : :  s o - -  2 % T  (A-1Q' Q) (5.9) 

where So(~ ) is the equilibrium entropy [7], A -x is a tensgr, reciprooal of 
A , the parantheses indicate scalar product. By virtue of (5.7) entropy 
balance (5.9) is applicable with accuracy to second order 

os Q 1 
~y + ,l~v T -- T~ (~-~ q '  Q) (5A0) 

If relationship (5.8) exists, then (5.10) transforms into the common ent- 
ropy balance which is glven by thermod~cs of Irreverslble processes for 
the case of thermal conductivity in a solid body. 

6. The hypothesis examined has the o~aracter of a recipe and therefore 
definite conclusions cannot be drawn wlth respect to the reglon of ~plioa- 
billty of equations obtained, Their value has to be Ju~ed by stu~iDg thelr 
properties. I t  was shown t h a t  t h e s e  equation8 o o r r e s ~  ~o def~e~a- 
sions for nonequilibrium entropy. The entropy balanoe reeult~ ~Ir~c;tl¥ 
from these equations permits to compute energy d!sSil~i~n. I~ the case of 
small perturbatlorm the possiblity exists to determine the no~equillbPium 
expression of mechanical energy and to derive the equation fop its ball,Ice. 
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In the low-frequency proceBs when the time of relaxation can be considered 
small, equations and balances mentioned transform into known equations and 
balances corresponding to thermodynamics of irreversible processes. There- 
fore I% is interesting to examine high-frequency processes~ 

A plane monochromatic wave satisfies system (4.7) if frequency w and 
wave number k are related by the dispersion relation 

k = ~ 1/1 - -  i~% (~Po / Po - -  5i~Po~o / 3po) -1/' (6.1) 

From (6.I) it is evldent.that waves with high frequencies have a velocity 
which approaches ~ ~ .  This is a physically natural result since high 
frequency oscillations ara not able to excite internal degrees O f freedom 
and molecules appear here llke rlgfd spheres. The usual equations for second 
viscosity which take into account (4.8) yield in this respect to system (4.7~ 

As another example we examine small fluctuations of a plate which confines 
a semi-infinlte volume with gas in its own plane. In this case a decaying 
transverse wave propagates into the gas. Application of Navier-Stokesequa- 
tions, as is well known [8], yields the following expression for the depth 
of penetration of a wave with frequency w 

8 =  ~ 2 ~ /  po e (6.2) 

Equation (6.2) shows that 6 ~ 0 for w ~ ® , i.e. high frequencies are 
"pushed out" to the surface. For the given problem the following system is 
easily obtained from (2.16) 

Oul °~12 0~12,~ Oul Po c 
p o - ~ + ~ =  O, Ot " P ° ~ x ~  ÷ ~ ~ = 0 (6.3) 

where subscript i designates direction of oscillation of the plate and 2 the 
direction normal to the plate. The dispersion relationship for system (6.3) 
connecting real ~ with complex k has the form 

po~ ---- po e (~ -~ iPo / ~) (6.4) 

From (6.4) it follows that 

5 =  (Im ~-I----> 2 ~ /  ]/poPo~L for e-~oo (6.5) 

where L is the length of free path. Qualitatively this result appears 
quite natural. In this fashion we see that even through equations of Grad's 
type describe the gas as a continuous medium they are capable of showing 
(at least qualitatively) effects which occur at distances of the order of 
the length of free path. An analogous comparison of system (5.7) and the 
usual Fourier equation can be made for the case of high frequency wave of 
thermal conductivity in a solid. 
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